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An Analytical Contact Model for
Design of Compliant Fingers
A compliant gripper gains its dextral manipulation by the flexural motion of its fingers. It
is a preferable device as compared to grippers with multijoint actuations because of
reduced fabrication complexity and increased structural reliability. The prediction of
contact forces and deflected shape are essential to the design of a compliant finger. A
formulation based on nonlinear constrained minimization is presented to analyze contact
problems of compliant fingers. The deflections by flexural and shear deformations are
both considered. For a planar finger, this formulation further reduces the domain of
discretization by one dimension. Hence, it offers a simpler formulation and is computa-
tionally more efficient than other methods such as finite element analysis. This method is
rather generic and can facilitate design analysis and optimization of compliant fingers.
We illustrate some of these attractive features with two types of compliant fingers, one for
object handling and the other for snap-fit assembly applications.
�DOI: 10.1115/1.2803655�
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Introduction
Mechanical fingers have many applications in high-speed pro-

uction automation. Unlike a typical multijoint finger actuated by
ne or more electrical or pneumatic motors, a compliant finger
apable of large flexural deflection is manipulated primarily by
eans of its contact with the target being handled. The concept of

ompliant fingers has been widely used for snap-fit assembly.
onenberger �1� has a comprehensive description on snap-fit as-

embly. Closed-form design equations based on the linear beam
heory can be found in Refs. �2,3� and other design concepts in
efs. �4,5�. Compliant fingers are also applied to object handling

o accommodate a limited range of shapes/sizes of live objects.
ee et al. �6� designed compliant rubber grippers �consist of mul-

iple fingers� for singulating broiders for poultry meat production
nd later �7� exploited their application as graspers to automate
ransferring of live birds. As compliant rubber fingers are fatigue
esistant, they have been widely used in automation applications
hat require repetitive motions, for example, poultry pickers and
ive bird harvesters. Recent research �8–11� explored compliant
ink contact to enhance motion transmission characteristics of
ontact-aided compliant mechanisms. As a compliant finger does
ot rely on multiple links that move relative to each other, it
liminates joint friction and yet requires no joint actuators. In
ddition, compliant fingers are easy to fabricate, assemble, and
aintain. They have been shown to be more attractive than tradi-

ional multijoint fingers for high-speed automation involving natu-
al objects.

Advance in microelectromechanical system �MEMS� has real-
zed the need for mass production of microcomponents. Various

icromachining methods have been developed, such as IC-based
ilicon processing, LIGA, surface machining, and microelectro-
ischarge machining �EDM�. However, these techniques are only
apable of two dimensional �2D� fabrication. In order to create
roader applications based on MEMS devices, it is required to
evelop microgrippers for manipulating and assembling micro-
omponents for three dimensional �3D� applications. The interest
o reduce the complexity of 3D assembly has motivated the de-
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velopment of passive microgrippers. As compared to active mi-
crogrippers, which may be driven by means of electrothermal
�12�, electrostatic �13�, electromagnetic �14�, or piezoelectric �15�
actuators, passive microgrippers mainly require contact between
their compliant fingers and the microcomponent to generate mo-
tion required for assembly; examples include micromachined end
effectors for MEMS assembly �16,17� and compliant microgrip-
pers for microsnap-fit connector �18,19�. Since uncertain actuator
displacement does not exist in passive microgrippers, they have
significant potential for very high precision applications. How-
ever, design of a compliant gripper is more challenging due to the
difficulty in predicting the contact-induced deflection of its fin-
gers.

Compliant fingers undergo large deflection when they contact
the target. In design, the deflected shape of the finger and the
normal and tangential components of the contact forces �that must
satisfy the boundary conditions at the interface� must be analyzed.
Since most contact problems involving large deformation do not
permit closed-form solutions, designers have resorted to numeri-
cal methods to approximate solutions. Among them, the matrix
inversion method satisfies boundary conditions at specified match-
ing points. It has been used by Paul and Hashemi �20� to calculate
normal contact forces. Another method, the variational inequality
method, determines the shape and size at contact by using well-
developed optimization techniques. Fichera �21�, and Duvant and
Lions �22� have investigated on the existence and uniqueness of
solution to contact problems. They show that the true contact area
and surface displacement are those that minimize the total strain
energy. From a numerical perspective, Kalker �23� formulates the
minimization problem as a quadratic programming problem to
solve frictionless non-Hertzian contact problems. The above two
methods are based on the elastic half-space model �24� so that the
linear elasticity theory holds. For contact problems involving large
deformation, a more general approach, the finite element method
�FEM�, is widely used. However, its formulation is complicated
and often requires intensive computation. Alternatives to the FEM
are also found in the literature. Yin and Lee �25� proposed a nu-
merical solver based on elliptical integrals to solve the problem of
a large-deflected finger contacting an elliptic object. By assuming
only one contact point exists, the results agree well with those
obtained by using FEM with less computation time. However, the
solver models the finger as a one dimensional segment without

considering the thickness of the finger. Hence, it is not applicable
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o thick fingers. Other research focuses on modeling the stiffness
f soft finger at contact using a set of line springs �see Ref. �26�,
or example�.

As the contact force and contact point are essential for compli-
nt finger design, they are not easy to obtain. Simple closed-form
quations �2,3� may be insufficient for sophisticated design. More
efined analysis techniques such as FEM are also available but
hey often improve accuracy at the expense of significantly more
omputation effort and time. Motivated by the need to design
ompliant fingers efficiently without loss of accuracy, this paper
resents a computational model using nonlinear constrained mini-
ization �NCM� to facilitate the design of compliant fingers. This
odel is rather general and can be used to analyze contact be-

ween an arbitrarily shaped 2D target and a compliant finger with
rbitrary geometry in its lateral direction. Two of the key compo-
ents to this model are the expression of strain energy and formu-
ation of geometric constraints. This remaining paper offers the
ollowing:

1. The model presented here extends the classical beam theory
by relaxing the assumption of small deflection and accounts
for both flexural and shear deformations.

2. The principle of minimum potential energy with contact
constraints is applied to solve the contact problem. This
�NCM� formulation reduces the 2D contact problem to 1D
while taking the geometric shape of the finger into consid-
eration.

3. A numerical method based on sequential quadratic program-
ming is presented for solving the constraint minimization
problem.

4. Two illustrative examples compare the computed results of
the proposed model against those obtained using FEM; the
results are in excellent agreement with simpler formulation
and much less computation effort.

Contact Model With Compliant Fingers
The contact problem involving compliant fingers is formulated

s a constrained minimization. The formulation begins with the
train energy of a compliant finger capable of large deflection with
hear deformation. This is followed by formulating the contact
onstraints that prevent the finger from penetrating the target. The
inimization of the strain energy subject to contact constraints

orms a nonlinear constrained optimization problem, which is
olved numerically for the deflected shape of the finger. Normal
nd tangential components of the contact forces can then be ob-
ained by using Newton’s third law.

2.1 Finger Model. Figure 1�a� shows a typical contact geom-
try involving a compliant finger, the manipulation of which relies
n contact forces from the rigid target that deflects the finger and
ccommodates the target geometry. The finger model developed
ere relaxes the assumption of small deflection commonly made

Fig. 1 Compliant gripping contacts
n thin beam theories �such as Euler–Bernoulli’s or Timoshenko’s
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�27��. The finger is modeled in terms of the differential arc length
ds along the neutral axis �represented by the dash line� instead of
dx so that it is applicable to large flexural deflections.

The deformation of the finger �with varying thickness w� is
described by the angle of rotation � and shear angle �. As shown
in Fig. 1�b�, the deflection of a differential segment can be inter-
preted as a superposition of two effects:

• a bending moment induces an angle of rotation � without
changing the shear angle and

• a shear force distorts the segment by a shear angle � without
causing it to rotate.

The resultant of these effects is that the cross section rotates by a
total angle of �+�. The position of a point �x ,y� on the neutral
axis can be obtained as

�x�ŝ�
y�ŝ�

� =�
0

ŝ �cos�� + ��
sin�� + �� �ds �1�

where ŝ is the arc length from origin O to point �x ,y�.
We consider here quasistatic analysis �see, for example, Ref.

�28� for an experimental justification� and apply the principle of
minimum total potential energy on the finger/target pair. Two as-
sumptions are made throughout this paper:

1. The contact between the finger and target is regarded as
adhesionless. Contact surface deformation of the finger is
ignored �treated as rigid surface� since it is relatively small
compared to bending and shear �see Ref. �28�, for example�.
Hence, the virtual displacement and the corresponding vir-
tual work done by traction forces on the contact surface are
considered to be zero. The total potential energy only in-
cludes the strain energy from the deflected finger.

2. The finger and target surfaces obey Coulomb’s friction law
and are sliding on each other. The magnitude of normal
force �Fn� and friction force �Ft� are then related to each other
by ��Fn�= �Ft�, where � is kinetic friction coefficient.

2.2 Minimization of Strain Energy With Contact
Constraints. The strain energy V stored in the deflected finger can
be stated as �29�

V =
1

2�
0

L 	EI�s�
d�

ds
�2

+ �GA�s����s��2 + EA�s�
de

ds
�2�ds

�2�
where s is the arc length; e is the axial displacement; A, L, and I
are the cross-section area, length, and moment of inertia of the
finger, respectively; E and G are Young’s and shear moduli of the
finger, respectively; and � is the shear coefficient.

The shear coefficient � is introduced to correct the assumption
that the shear angle remains constant in each cross section �no
warp�. In Eq. �2�, the first and second terms in the integral account
for the strain energy due to linear elastic bending and shear, re-
spectively. The third term accounts for the axial deformation.
However, it is usually very small for compliant-finger contact ap-
plications where manipulation relies mostly on flexural rather than
axial deflection �29,30�. Hence, it is neglected hereafter.

The prescribed boundary constraint for a finger clamped at the
origin is

��0� = �0 �3�
where �0 is the initial angle of rotation at s=0. In addition, there
are contact constraints that describe the state at contact. Specifi-
cally, a point �x̃ , ỹ� on the contact surface ab shown in Fig. 1�a�
and a point �x̄ , ȳ� on the target surface must satisfy either of the
following inequalities in order not to penetrate each other:

˜ ˜
g�x,y� � 0 �4a�
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g�x̄, ȳ� � 0 �4b�
he gap function g describes the target surface in Eq. �4a� and
nger surface in Eq. �4b�. The functions � and � must follow the
rescribed boundary constraint in Eq. �3� and contact constraints
n Eq. �4� in order to be kinematically admissible.

The principle of minimum potential energy states that of all
inematically admissible deformations, those that satisfy the equi-
ibrium condition at contact make the total potential energy mini-

um. With this, we find the minimum of V from Eq. �2� with
inematical constraints imposed by Eqs. �3� and �4�. Note that
hen using the principle of minimum potential energy, we only
eed to account for the prescribed boundary condition �Eq. �3��.
he natural boundary condition is automatically satisfied inside

he energy integral �Eq. �2��. Thus, the resulting � and � will yield
he deflected shape of the finger at contact. The numerical solu-
ions are presented next to obtain the deflected shape.

Numerical Solutions
The procedures to obtain the numerical solutions begin with

nite difference approximations of Eqs. �2� and �4�, then solve the
inimization problem for the finger shape using the method of

equential quadratic programming, and finally obtain the contact
orces.

3.1 Approximation of the Strain Energy. The neutral axis
f the finger is discretized into N equally spaced intervals so that

si = i�s �s =
L

N
�i 
 ��si� �i 
 ��si�

xi 
 x�si� yi 
 y�si� i = 0 � N

ence, Eq. �2� can be approximated by, but not restricted to, the
rapezoidal rule.

V 

1

2
�s��

i=1

N

EIi−1/2
�i − �i−1

�s
�2

+ �GAi−1/2
�i + �i−1

2
�2�

�5�
he area A and moment of inertia I are approximated as

Ii−1/2 =
I�si� + I�si−1�

2
and Ai−1/2 =

A�si� + A�si−1�
2

ince the finger is clamped at the base, the initial angle of rotation
�0� is equal to �0. As will be shown in an example in Sec. 4, the
unctions � and � experience nonsmoothness at the contact point
hen the contact forces directly exert on the peripheral of the
nger. Hence, polynomial approximations �where the functions
re assumed to be continuously differentiable� are less appropriate
n s� �0,L� since the contact point is not known in advance.

From Eq. �1�, any point on the neutral axis can be approximated
s

xi =
1

2�
k=0

i−1

�cos��k + �k� + cos��k+1 + �k+1���s

nd

yi =
1

2�
k=0

i−1

�sin��k + �k� + sin��k+1 + �k+1���s

ny point �x̃ , ỹ� on the contact surface ab of the finger is related
o its corresponding point on the neutral axis by

� x̃

ỹ
� = �x

y
� +

w�s�
2
�cos�� + � + �/2�

sin�� + � + �/2� � �6�

here w�s� in Eq. �6� accounts for nonuniform fingers. Point �x̃ , ỹ�
s then used to formulate contact constraints in Sec. 3.2.
Special Case: Compliant Finger With a Rigid Jaw. Some fin-

ournal of Mechanical Design
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gers �such as snap fits� have a rigid jaw attached to the end of the
finger �as shown in Fig. 2�, where the contact occurs between the
jaw and target. Note that the length L here does not include the
size of the jaw. Since the contact force does not act at the com-
pliant part of the finger, the deflected finger shape can be approxi-
mated by continuously differentiable polynomials, i.e.,

� 
 �
i=0

k

cis
i

and

� 
 �
i=0

k

dis
i �7�

where ci and di are coefficients.
The strain energy is obtained by plugging Eq. �7� into Eq. �2� as

V 

1

2�
0

L	EI�s���
i=1

k

icis
i−1�2

+ �GA�s���
i=0

k

dis
i�2�ds �8�

After integration, Eq. �8� becomes a quadratic function of ci’s and
di’s. Similarly, the points on the neutral axis can be obtained by
inserting Eq. �7� into Eq. �1� as

x�ŝ� 
 �
0

ŝ

cos
�
i=0

k

cis
i + dis

i�ds

and

y�ŝ� 
 �
0

ŝ

sin
�
i=0

k

cis
i + dis

i�ds

The position �x̃ , ỹ� on the contact surface of the jaw, i.e., segment
ab, can be described by the angle of rotation at s=L and the point
�x�L� ,y�L��:

� x̃

ỹ
� = �xL

yL
� + � cos��L + �L�

− sin��L + �L�
sin��L + �L�
cos��L + �L� ��Px

Py
� �9�

where the subscript L denotes the value obtained at s=L; �Px ,Py�T

is the position vector from �xL ,yL� to �x̃ , ỹ� in the jaw frame �with
origin at �xL ,yL�T and axes parallel to x-y before contact�.

3.2 Discretization of Contact Constraints. Two formula-
tions are illustrated for discretizing the constraints in Eq. �4�. As
shown in Fig. 3�a�, the first discretizes the known contact surface
into M points, whose positions are obtained using Eq. �6� or �9�.
The constraint function g then describes the target surface. The

Fig. 2 Grip with a rigid jaw
Fig. 3 Formulation of constraint functions
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econd shown in Fig. 3�b� discretizes the target surface into M
oints and the constraint function g then describes the contact
urface. The following inequalities must hold for discretized con-
act and target surfaces, respectively:

g�x̃j, ỹ j� � 0 j = 1 � M �10a�

g�x̄j, ȳ j� � 0 j = 1 � M �10b�
The choice between the two formulations depends on which

urface is smoother or which can be described by a continuous
unction g. The surface with a sharper corner is always the dis-
retized surface.

3.3 Sequential Quadratic Programming. To solve for the
eflected shape of the finger due to contact, the quadratic object
unctions, Eqs. �5� and �8�, must be minimized subject to inequal-
ty constraints in Eq. �10�. For this, the sequential quadratic pro-
ramming �SQP� is presented here to solve for the minimum.
pecifically, the problem is rewritten as follows:

min f�x�

ubject to

h�x� = 0 gj�x� � 0 j = 1 � M �11�

here f denotes the strain energy, x is the vector of �ci ,di� for
ndirect contact or ��i ,�i� for direct contact, h is the prescribed
oundary condition, and gj is the jth inequality constraint. The
QP approximates the current state �say, xk� by a quadratic pro-
ramming �QP� subproblem as

min
1

2
pT�2L�xk�p + �f�xk�Tp

ubject to

�h�xk�p + h�xk� = 0 �12�

�gj�xk�p + gj�xk� � 0 j = 1 � M

here

p = x − xk and L = f�x� + �
j=1

M

	 jgj�x� + 	M+1h�x�

he 	 j’s are Lagrange multipliers for the equality and inequality
onstraints in Eq. �11�. Equation �12� contains a quadratic ap-
roximation of f�x� and linear approximations of h�x� and gj�x�.
he minimizer of Eq. �12� is then used to define a new state by
etting xk+1=xk+p. The minimizer of the QP should be the opti-
al solution of Eq. �11� when the iterative process converges.
owever, the computation of Hessian matrix �2L�xk� is time con-

uming for large problems and that it may not be positive definite.
arious quasi-Newton algorithms can be used to approximate
essian matrix. Here the popular by Bryoden–Fletcher–Goldfarb–
hanno �BFGS� algorithm is applied with formulas stated as fol-

ows �31�:

Table 1 Simulation

Parameters Values Par

Young’s modulus 4.8�106 N /m2 Elli
Shear modulus 1.71�106 N /m2 �N ,
Poison’s ratio 0.4 Con

anaBase thickness wb 0.030 m
Tip thickness wt 0.017 m Num

forWidth 0.025 m
Ellipse long axis 0.09906 m Sol

forEllipse short axis 0.06731 m
11008-4 / Vol. 130, JANUARY 2008
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W̃k+1 = W̃k +
qkqk

T

qk
Tpk

−
W̃kpkpk

TW̃k

pk
TW̃kpk

�13�

where

pk = xk+1 − xk �13a�

and

qk = �f�xk+1� − �f�xk� + ��
j=1

M

	k+1,j�gj�xk+1� − gj�xk��

+ �	k+1,M+1�h�xk+1� − h�xk�� �13b�

The matrix W̃k+1 is the approximation Hessian for the next step.
The computational steps for the SQP are outlined as below.

1. Given initial x0, W̃0, and tolerance 
:
2. For k=0,1 ,2. . .
Solve Eq. �12� for p and 	k+1j�j=1�M +1�
Set �=1 and xk+1=xk+�p

While f�xk+1�� f�xk�
�=� /2
xk+1=xk+�p

End
Obtain BFGS update matrix W̃k+1 from Eq. �13�.
If �f�xk+1�− f�xk��

, exit

End

3.4 Determination of Normal and Tangential Contact
Forces. Once the deflected shape is obtained, the contact forces
are calculated for evaluating the performance of the finger. Apply-
ing Newton’s third law, the contact forces F= �FxFy�T from the
finger to the target �or −F from the target to the finger� must have
a moment on the finger that equals the reaction moment at O:

ameters and values

ters Values

position ye 0.12065 m
�90,90�

t elements and
s type

CONTA171 and TARGET169;
Surface-to-surface analysis

r of elements
er

90�12

lement
YS

PLANE2 for ellipse and
PLANE42 for finger

Fig. 4 Schematic of a rotating gripper contacting a target
par

ame

pse
M�
tac

lysi
be

fing
id e
ANS
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�EI�s�
d�

ds
�

s=0
= − PC � F �14�

here PC= �xCyC�T is the contact point. The contact force F in-
ludes normal and tangential components that are written in the
ollowing form:

F = �FxFy�T = Fn + Ft = �FnxFny�T + �FtxFty�T

he direction of normal contact force is parallel to the gradient of
he target surface at contact point PC:

� �g/�y

�g/�x
�

�xC,yC�
=

Fny

Fnx
�15�

ince normal contact force and tangential �friction� contact force
re orthogonal to each other, it must hold that

Table 2 Comparison of computation time

ethod Time �sec�

CM �MATLAB� 17.60
EM �ANSYS� 222.42

ig. 5 Snapshots of finger-ellipse contact „�=126 deg,
02 deg, 78 deg from left to right…

Fig. 6 Comparison of deflected shape at �=90 deg
Fig. 7 Angle of rotation and shear angle at �=90 deg

ournal of Mechanical Design
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FnxFtx = − FnyFty �16�
Since the contact surface is slipping, the magnitude of normal
force relates to the magnitude of friction force by

��Fnx
2 + Fny

2 = �Ftx
2 + Fty

2 �17�

where � is the kinetic friction coefficient. The components Fnx,
Fny, Ftx, and Fty can be solved simultaneously from Eqs.
�14�–�17�. Note that the signs of Ftx and Fty have to be determined
from the direction of interaction between the finger and target.

4 Verification of Frictionless and Frictional Contacts
Two examples are illustrated here, which also offer a means to

verify the formulation introduced in Sec. 2, where FEM serves a
basis for comparison. Both frictionless and frictional contacts will
be considered. In Example I, a gripper manipulates an elliptical
target by direct finger contacts. Such target handling applications
can be seen in Refs. �6,32�.

To show applications of designing snap fits for part assembly,
Example II illustrates a finger that contacts the target through a
rigid jaw. Two target geometries are illustrated in this example,
namely, a smooth and a sharp-corner targets; the latter is not con-
tinuously differentiable. For clarity, the compliant portion of the
finger is assumed to be thin and hence shear deformation is not
considered.

Example I: Finger for Target Handling. As shown in Fig. 4, this
example studies the effect of finger geometry and shear deforma-
tion of rotating fingers on manipulating an elliptical target by
direct contact. Two symmetric sets of grippers are required on
both sides of the ellipse with the long axis of the ellipse the line of
symmetry. For clarity, only one set of such gripper is shown in
Fig. 4. The two sets of grippers provide a net force in the xw
direction for transferring the target �the force in the yw direction
and moment in the zw direction are canceled�. Each gripper has
two nonuniform �identical� fingers with 36 deg apart before de-
flection. We consider the left finger and perform a quasistatic
analysis where the relationship between the target and rotating
finger can be described by

� = − 236.22xe + 102 deg �18�
where xe �in meters� is the center of the target and � is the rotation
of the finger. Both are measured in the world frame xwyw. The

Fig. 8 Comparison of simulation results „�=0…

Fig. 9 Comparison of simulation results „�=0.5…
JANUARY 2008, Vol. 130 / 011008-5
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ontact surface includes one side of the finger that approaches the
arget. Since the contact location is an unknown, the whole finger
urface is discretized and the gap function g is obtained by using
he equation of an ellipse:

gj = b1x̃j
2 + b2ỹ j

2 + b3x̃jỹ j + b4x̃j + b5ỹ j + b6 � 0 �19�
here bi’s are the coefficients of the elliptical target.
Various shear coefficient formulae have been proposed for the

hear coefficient � in Eq. �2�. We adopt the formula suggested by
aneko �33� to correct the shear angle of the finger with a rect-

ngular cross section, which is

� = �5 + 5��/�6 + 5�� �20�
here � is Poison’s ratio. The results of the NCM and FEM are

ompared with simulation parameters listed in Table 1. Figure 5
hows three continuous snapshots where the elliptical target
oves from left to right while the gripper rotates clockwise. The

omputation time of xe=0.0508 m is compared in Table 2 where
oth NCM and FEM are computed using a Pentium 4 PC
2.8 GHz with 512 MByte memory�. The corresponding deflected
hapes �at �=90 deg� of both methods are also compared in Fig.
. For the NCM, the computed angle of rotation � and shear angle

are plotted in Fig. 7. There is a jump for EI�d� /ds� and �
round s=0.05 m where the contact point locates. There is no
eformation after the contact point and hence, � remains constant
nd � becomes zero. Figure 8 compares the results of frictionless
ontact by using the NCM, FEM, and one dimensional �1D�
odel �where the finger is treated as a line segment without con-

idering its lateral thickness�. In Fig. 9, the results of frictional
ontact are also compared with direction of friction force Ft point-
ng to the negative x axis.

For living targets, the contact force profiles shown in Figs. 8
nd 9 are very important since excessive forces will damage the
arget. Through NCM simulations, the contact force profile can be
redicted, which will reduce the number of design configurations
o be tested and offer an essential basis for optimizing the finger
eometry.

Example II: Finger for Snap-Fit Assembly. An effective snap-fit
ssembly often requires designing the finger geometry such that it
s easy to insert but very difficult to pull out. We study here the
ffect of finger geometry and coefficient of friction on the inser-
ion forces. Two jaw geometries are illustrated here; �a� smooth
arget surface and �b� nonsmooth target surface shown in Figs.
0�a� and 10�b�, respectively. Due to symmetry, only the bottom

Fig. 10 Gripping for snap-fit assembly

Table 3 Simulation paramet

Parameters Values P

Young’s modulus 2.62�109 N /m2 E
fLead angle � 25 deg

Width 0.0095 m C
aFinger length L 0.057 m

Jaw length Lt 0.019 m M
Fixture radius R 0.0089 m a
Fixture position yo 0.0105 m b
11008-6 / Vol. 130, JANUARY 2008
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finger is considered.
(a) Finger With a Smooth Target Surface. Consider the finger/

target geometry shown in Fig. 10�a�. Since the target surface is
smooth, Eq. �10a� is applied by discretizing contact surface ab
into M equally spaced points. The constraint function describing
the target surface at contact is characterized by the equation of a
circle such that

gj�x̃j, ỹ j� = �x̃j − xo�2 + �ỹ j − yo�2 − R2 � 0 �21�
where R is the radius of the extrusion part of the target and �xo ,yo�
is center of the circle, as shown in Fig. 10�a�. The simulation
parameters are listed in Table 3. The results comparing NCM and
FEM are shown in Figs. 11 and 12, which also illustrate the ef-
fects of different thicknesses and coefficient of friction on the
insertion force �Fx�, respectively. Both figures show excellent
agreement between the NCM and FEM results. Figure 13 also
shows the deflection shape obtained by ANSYS® where xo

Fig. 12 Effect of friction on insertion force „Example II„a…; �
=0, 0.2, 0.4; w=0.0032 m…

and values of Example II„a…

meters Values

ent type
NSYS

PLANE2 for finger and target

tact elements
analysis type

CONTA175 and TARGET169;
Node-to-surface analysis
50
�0.057 m, 0.0105 m�
�0.0762 m, 0.0016 m�

Fig. 11 Effect of thickness on insertion force „Example II„a…;
�=0, w=0.0032 m and �w=0.001 m…
ers
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0.06781 m. As Fig. 11 indicates, the maximum insertion force
ccurs at xo=0.064 m and increases as thickness increases. Such
roperty is very useful for designing snap fits whose performance
re dominated by Fx.

(b) Finger With a Nonsmooth Target Surface. Figure 10�b�
hows a target that has a sharp corner at �xc ,yc�, which is not
ontinuously differentiable. Applying Eq. �10b�, the target surface
s discretized and a circle function is used to describe arc ab. The
imulation parameters are listed in Table 4 and the results are in
ig. 14. As shown in Fig. 15, the insertion forces computed for

hree friction coefficients ��=0,0.2,0.4� agree with the FEM re-
ults before the maximum insertion force occurs �around xc
0.058 m. When the target �xc ,yc� reaches point a, FEM has ex-
ess element distortion around the corner and leads to divergence.
ore elements and finer load steps do not improve the result. The
CM, on the other hand, does not suffer from this problem and

an predict the constant insertion force at the end of insertion.

Fig. 13 Simulation results from FEM „Example II„a……

Table 4 Simulation parameters and values of Example II„b…

arameters Values Parameters Values

oung’s modulus 2.62�109 N /m2 Jaw radius
R

0.05 m

hickness w 0.0032 m Target position yc 0.0026 m
idth 0.0095 m M 20

inger length L 0.057 m a �0.057 m,
0.0085 m�

aw length Lt 0.019 m b �0.076 m,
0.0016 m�

aw height Ht 0.0069 m

ig. 14 Comparison of deflected shape at xc=0.0612 m „Ex-
mple II„b……
Fig. 15 Insertion force of Example II„b…
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Table 5 lists the average computation time for calculating the
insertion force at xo=0.0678 m and xc=0.0582 m for Examples
II�a� and II�b�, respectively. For both cases, the FE mesh sizes of
the finger surface are 100 and 50 for contact surface ab. The mesh
sizes are chosen for accuracy and convergence considerations. It
shows that the formulation presented here is computationally
more efficient and stable without losing accuracy. The NCM for
both cases converges when using polynomials �Eq. �7�� higher
than fourth order. As a guideline, the minimum order polynomial
is four for small to median deflection. For fingers with larger
deflection, higher order polynomials are expected.

To obtain a better snap-fit design, the maximum insertion and
retention forces must be chosen properly so that it is easy to
assemble and detach without losing integrity of the assembly. Fig-
ures 11, 12, and 15 in Example II indicate the values of maximum
insertion forces �Fmax� and location where it occurs. The force
Fmax depends on the mating geometry and coefficient of friction
of the finger-target pair. Equations that based on classical beam
theory have been provided �2,3� to quickly obtain these forces for
fingers with simple geometry and undergoing small deflection. As
these equations provide only first-order accuracy, the NCM has
been demonstrated �in the previous two examples� to accurately
predict Fmax for large-deflected fingers with complicated geom-
etry. Consider the finger shown in Fig. 10�b� as an illustration.
The relationship between Fmax and finger geometry is obtained by
using NCM when �=0. The result shown in Fig. 16 indicates that
Fmax can be increased by increasing the thickness w of the finger
or dimension Ht of the jaw. Thus the proposed NCM can imme-
diately help practical designer choose appropriate finger dimen-
sions without costly prototyping iterations.

Concluding Examples I and II, the following observations can
be made from the comparison among NCM and other existing
methods:

1. As shown in Fig. 8, the 1D model ignores the geometry and
is only applicable for fingers with relatively small thickness.
The error of contact forces increases as the thickness in-
creases. In addition, when applying the NCM without con-
sidering shear deformation, the contact force profile tends to
be higher than those that consider shear deformation. When
considering shear deformation, the predicted contact forces
match well with FEM. Typical differences are within 3%.
Without losing accuracy, the NCM, which discretizes the

Table 5 Comparison of computation time

Method Example II�a� Example II�b�

NCM �MATLAB� 2.31 s �fourth order poly.� 1.64 s �fourth order poly.�
FEM �ANSYS� 516.46 s �1266 elements� 547.76 s �1377 elements�

Fig. 16 Relations between the maximum insertion force and

finger geometry „Example II„b…; �=0…
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finger in one dimension �along the neutral axis�, can accu-
rately account for both flexural and shear deformations that
become significant for thick fingers. It is also far faster than
methods that discretize the finger in two dimensions �along
the neutral axis and transverse direction�.

2. The excellent agreement of the NCM and FEM also verifies
that the assumption of negligible surface deformation for
frictionless contact and frictional contact with moderate fric-
tion coefficient.

3. In order to satisfy the boundary conditions of the finger/
target surface, FEM requires discretization of both finger
and target surfaces whereas the NCM needs only to dis-
cretize one of the surfaces and treat the other one as a con-
tinuous function. Hence, the formulation of NCM can be
simpler. When modeling surfaces with sharp corners, NCM
is also more stable while FEM may have excess element
distortion.

Conclusions
A computational model based on NCM has been presented for

nalyzing compliant fingers whose manipulation primarily relies
n direct or indirect contact with targets. The model takes into
ccount large flexural deflection and shear deformation whose ef-
ect cannot be neglected for thick fingers. By formulating contact
onstraints this model can be applied to nonuniform fingers and
ith arbitrary target geometry.
Two examples have been presented to illustrate the formulation.

oth frictionless and frictional contacts have been considered. The
imulation results of the NCM agree well with those obtained by
sing FEM within 3% difference. The advantages of the NCM are
he following: �a� The dimension of discretization can be reduced
y one. Hence, it is computationally much more efficient. �b�
nly one surface, either the target or contact surface, needs to be
iscretized. Hence, its formulation is simpler.

The excellent agreement shows that the formulation offered by
he NCM can effectively facilitate the process of design and
nalysis of compliant fingers that have a broad spectrum of appli-
ations ranging from MEMS device fabrication �16–19� to auto-
ated handling of live objects in food processing industry �7�. In

ddition, the NCM has been illustrated in the context of 2D de-
ections to demonstrate the effect of bending and shear. However,

he extension of this formulation to 3D deflections, though te-
ious, is relatively straight forward �34�.
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